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1 Introduction

Recently, Morrison and Brillhart [1], (henceforth M&B), gave a detailed account of a powerful
factorization program based upon the continued fraction method of Lehmer and Powers [2].
For every n, one has

A1 1 (1)
o+ @+ Gt (VN+P,)/Qn

with known recurrences for computing the integers P,, ),, and also certain integers A,, B,
such that

N =gqo+

(—1)"Qn = A2 — B2N. (2)
Thus

(-1)"Q, = A2 (mod N) (3)

*Original paper, in mimeographed type-written form circa 1975, was never completed. Typed into latex
by Stephen McMath in March, 2004. Equation numbers and sections match the original. Composition of
forms is denoted here by .



where A,, may be reduced (mod N). (Note: Our A, is designated as A, in [1].)
If the product of one or more selected (—1)"Q,, equals a perfect square, and

n(-1)"Q, = @Q* A, =A (mod N) (4)
then
N | (A*-@QY). ()
Now if
Nt(A-Q), Nt1(A+Q) (6)

the GCD(A — @, N) is a proper factor of N. If (6) does not hold, the square product (4)
fails (unless GCD(Q, N) is already > 1) and another product (4) must be sought.

M&B are prepared to accept several such failures until they find a case where (6) holds.
They make no attempt to analyze the conditions for failure and do not even pose the question.
Failure is accepted philosophically, even poetically: “...your butterfly net is empty”. Our first
purpose is to give an analysis of failure and thereby to gain understanding and to eliminate
(most) false tries.

This factorization method is used primarily for very large N and has the advantage that
all

P, Q, =O(VN) (7)

But the A,, are O(N) even when reduced. Their multiprecision computation, reduction and
multiplication, and the evaluation of GCD(A — @, N) are all lengthened correspondingly.
Their storage requirements are likewise increased. Our second purpose is to show how all that
may be avoided; the A, are not needed at all. Their computation, reduction, multiplication
and storage may all be dispensed with.

To understand how that can be done, one needs to reinterpret the continued fraction
algorithm (1) as a period of reduced binary quadratic forms, or, alternatively, to utilize the
concepts of the real quadratic field Q(v/N). We do this first.

Besides the two main purposes described above, we will conclude with some other com-
mentary on [1] and its method.

2 The Principal Period

Consider the “knight’s tour” diagram:

n
0 Qo 2P

1 2P, —(y
2 Q. 2P

3 2P, —Q3
4 Q4 etc.



The n'* end-coefficient is (—1)"Q,,. The n'* form is

Fn = ((_1)an 2Pn+1a (_1)n+1Qn+1) (8)

F, is an indefinite quadratic form of discriminant

4(P3+1 + QnQny1) = 4N (9)

(We are mostly following [1] here and thereby confine ourselves to even discriminants.
Odd discriminants can also be used and are touched upon briefly below.)

If Qo =1, P, =+/N, and P,,; and Q,,,; are chosen such that each P,; is the maximal
integer for which

Pn—|—1 = _Pn (mOd Qn)a N = Pz+1 + QnQn—Ha Qn—|—1 > Oa (10)

then the sequence F), constitutes the principal period of reduced forms of discriminant
4N. For the example in [1], N = 13290059, the period begins as in Figure 1.

N = 13290059

1 7290
778 —4034

3257 5736
6704 —1555

1321 6506
5794 —2050

2389 3762
4402 —4082

2069 3874
5346 —4610

1333 5318
4014 —4666

1985 3926
5582 —4754

1157 5988
1490 —3739

3406 5322
5616 —1823

2965 6244
5706 —1195

4310 2914
2268 —2591

4633 6998
7014 —226

4385 1756
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The array may be interpreted as a sequence of infinite continued fractions. For every
n > 0, one has

VN-P, @, _ 1 1 1
Qn-1 VN+ P, @t Gui1t Guiat

(11)

where

\/N+PnJ :Pn+Pn+1

dn = L (12)

@n Qn
In particular, for n = 1, since Qg = 1,
1 1 1
VN=P+— — — (13)
@it Gt g3+

Any continued fraction (11) may be truncated, leaving an exact identity, by replacing any

final g, with the quadratic surd (v/N + P,,)/Qm of which it is the integer part.
The three integers in (8) are the coefficients of a binary quadratic form in the variables
U, and V,. The (n — 1)* form:

anl(Unflvnfl) = (_1)n71Qn71U271 + 2PnUn,1Vn,1 + (_l)nQnVnzfl (14)

transforms into the n* form F,,(U,,V,) by the liner substitutions

Unfl = _Vna
anl = Un + (_1)HQnVna

that is, by the unimodular matrix
0 -1
16

{ Pn+1 = _Pn + QnQn (17)

(15)

This gives

Qn+1 = anl + Qn(Pn - Pn+1)

The two end-coefficients of F,, are equal to F,,_1(U,_1,V,_1) with the variables equal to
the columns of (16); that is, with
Un—l =0 Vn—l =1, or
’ 1
{ Un—l =-1 Vn—l = (_1)nqna ( 8)
respectively. Likewise, by compounding successive matrices (16), or their inverses, the end-

coefficients of any F,, are given by any Fy,(Up,, V) for computable values of its two arguments.
Specifically, for

FO = (]‘azPla_Ql) (19)

there are integers a,, and (3, such that



(_1)nQn = 04723 + 2-Plafnﬁn - Qlﬂg

= (an + Pl/@n)2 - /8727,N (20)
= A2 — B2N,
as in (2). Or, we may write,
(—1)"Qn = N(A, + B.VN) (21)

i.e., the end-coefficient is the norm of an algebraic integer A,, + B,vN. Here, A, and B,
are < 0 and A, + B,V N increases monotonically with n. By Levy’s Law for almost-all
continued fractions, we can estimate (but only roughly)

2

12log?2

when n is large and the period of the continued fraction is large.

log(An + ByVN) ~ n - (22)

3 Batting 500

In factoring 2'?® + 1 M&B encountered four failures before (6) was satisfied. For their
illustrative example N = 13290059, they give four products (4), two successes and two
failures:

“Product” I. Going beyond our table to n = 52 one finds the square:

(—1)2Qs5 = 25, Asy  (mod N) = 2467124,

Then, with A = 2467124, Q@ =5, (A — Q, N) = 4261. So 4261 divides N.
Product II. Suppose we do not go as far as n = 52. Try this:

n (-1)"Qy A, (mod N)
10 1333 =31-43 6700527
26 3286 =2-31-53 11455708
40 4558 =2-43-53 3213960.

Then @ = 2-31-43-53 = 141298 and A (reduced) also equals 141298. So N = (141298 —
141298, N) and N | N. Failure; that we already know.
Product ITI. Again, take

n (=1)"Q, A, (mod N)
5 —2050=—2-5%-41 171341
22 4653 = 41-113 5235158

31 —5650 = —2-52-113 1895246.

Then Q = 2-5%-41-113 = 231650 and A = 13058409. Since 1 = (13058409 — 231650, N) we
have 1 | N. That we also know. M&B refer to this as a different “type of failure” than that
in the previous product. Actually, it is essentially the same, merely a sign change in ). We
now have N = (13058409 + 231650, N) because A — (—Q) = N.
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Product IV. Finally, try

n (-1)"Q, A, (mod N)
5 —2050=—2-5%-41 171341
22 4653 = 41-113 9235158
23 —226=-2-113 1914221.

Q=2-5-41-113 = 46330, A = 1469504 and 4261 = (A — Q, N). So 4261 | N as in Product
I
4 Failure and Equivalence

One can always obtain a square product (4) simply by squaring any (—1)"Q,. But that
always leads to failure; we call it the trivial failure. If

(=1)"Q, = N(A4, + B,VN)
its square is
Q% = N(A2 + B2N + 24,B,VN)

Therefore, either A—Q or A+Q equals 2B2N and so we have failure unless (Q, N) is already
> 1.

Now the failures of products II and IIT above are not much deeper than the trivial failure.
In IT we have

31-41 = Q1o = N(6700527 + 1838v/N)

2.31-53 = Qus = N(17435545529165 + 4782688389v/N)
with A,,, B,, unreduced (mod N). Since

A10Ase + B1gBag N = A1gBog + AygBip =0 (mod 31)
we have the product
Q10Q26 = 2-43- 53 - (31%) = (312) - N(4 + BV'N)
where
31A = AjgAss + B1gBagN, 31B = A1qBog + Az Bip-
But it may be verified that A = A4 and B = By and so we also have
Qu =2-43-53=N(A+ BVN).

Therefore, the product (QQ19Q26Q 40 differs from the trivial failure only by the additional factor
312 on both sides of the equation.



Similarly, for III, one could verify that

(As + BsV/N)(Ags + ByyV'N) = 41(A;; + Bs;V'N) (23)

and Q5Q22Q3;1 differs from the trivial failure only by the common factor of 412.
On the other hand, one could verify that

(As 4+ BsV/N)(Ags + ByoV/N)(Ags + BysV/N) = 2-41-113(Asy + BsyvV'N)  (24)

and so product IV will succeed (or fail) together with product I; they are equivalent.
Note that, to the extent (22) is valid, the indices n in (23) and (24) should be roughly
additive. They are:

5422~ 31, 5+ 22+ 23 ~ 52.

For large n, A, and B, get very large (roughly, as in (22) ) and if we really needed these
unreduced numbers to predict failure, as in (23), this criterion would not be very practical.
But we have already stated that we do not need the A, at all, reduced or unreduced; we
need only the P, and @),, and so we now give a second theory of failure.

From the table above we read

Fs = (—2-5%-41,5795,2389),
Fyy = (41 - 113, 6998, —226).

The composition Fj % Fps of these two quadratic forms (see [3, Appendix 1]) is found to be
F = (-2-5%113,6094,709).

This is already reduced, and if we extend the table we would find that F' = F3;. And so

F5 * F22 = F31 (25)

is analogous to (23) but does not require the A, in its calculation - only the P, and @,.
The main point in the calculation is that the factors 41 on the left of F5 and F5, cancel each
other in their product F' = F3;. Why?

In general (see [3, Appendix 1]), if

P+ Fy = (X1, Y1, 21)(Xa, Y3, Z2) = (X3, Y3, Z3) = F3
prior to any reduction of F3, and if
X1 = M]_ptlll...pgnm, X2 = szll)lp,l;ﬁn
where (M;, M) =1, then
X3 = Mlepilpfﬁn

with
ci = a; + b; if p; { (Y1 +Y2)/2,
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while

Since 41 | (5794 + 6998) in F5 and F,, the factors 41 cancel in their composition (25).
Similarly,

Fs5 x Foy x Fyg = Fr (26)

is analogous to (24). Composition is commutative and associative and we may carry out
(26) in several ways: via (25) and F3; * Fh3 or via Fiy * Fos = (—2 - 41,7162,5689) = Fys
and then Fj * Fys. But F' = F; x Fy3 is not yet reduced since 5% - 41-113 = 115825 > 2\/N,
and so F' would not be found in the period of reduced forms unless it were first reduced. It
is useful to note that the cancellation of 113 in F5y * F53 is clear a priori since Qo3 divides
Pyy + Ps3 from (12) and ipso facto 113 also divides Psy + Pos.

Our third criterion for failure is by far the simplest arithmetically; it relates to both
previous criteria but is based upon conjugate prime ideals in the real field Q(\/ N). Consider
the equal-valued

_Q55 = _Q109 = _Q321 = _Q363 =—-2015=-5-13-31. (27)

A product of any distinct pair of these is not the trivial failure. It may succeed or fail, but
if it fails it is not the trivial failure described above. The corresponding F;, are all distinct:

Fss = (—2015, 5036, 3449), Fyoe = (—2015, 3424, 5141),

The rational primes p dividing Q,, are of two types!, those that divide the discriminant
4N and have (4N |p) =0, and those that do not have (4N | p) = +1. The first type ramify;
the second split. In the first, there is only one prime ideal of norm p; call it P. In the second,

there are two; call them P and P. The product P - P equals the principal ideal (p) in the
second type, while P?> = (p) in the first.

For any (—1)"Q, in question, we want to factor the principal ideal (4, + B,v/N) into a
product f, of prime ideals. If any splitting p divides @),,, we adopt the convention that P
divides (4, + B,V N), or P does, according as the fractional part

2Py 11 VPnHJ 1 1

2 P | <3 o >3 (29)

2’ 2
respectively. Whereas the four —@Q,, in (27) are all equal, from (28) we find that the four f,
are all distinct:

f55 = —5 . 13 . 31, f109 = —5 . 13 . 31,

f321 = _5 * B * 31, f363 = —5 . ]__3 . 31 (30)

And as our first criterion was based upon A, + B,V N and our second upon F,, our third
criterion is based upon f,.
Returning to Product III, we now have

! Grammatically, Shanks may have restated the second type as “those that have (4N |p) = +1” [SM].



fs=—2-5 41, foo =41-113, fo = —2-5 - 113,

and the analogue to (23) and (25) is now

f5 - fa2a = (41) fa1. (31)

So our criterion is this: With a proviso (36) given below, if the factors in a product (4)
can be split into two disjoint sets S; and S, such that

an:ana (32)

except for some principal ideals (p) on either or both sides, then the product (4) fails. Note
that when @, is treated as an integer having unique factorization into rational primes, as in
[1], without distinguishing the underlying conjugate ideals P and P, all of this structure is
lost.

Whereas A,, + B,V N increases monotonically, F,, and f, will repeat periodically. For
our example N = 13290059, the period is 1068. Therefore, if

n = m + 1068k, (33)
we have F,, = F,,,, fn, = fm but
A, + B,VN = é*(A,, + B,VN) (34)
where
€ = A1068 + Bloeg\/N (35)

is the fundamental unit. Now a square

(=1)"Qn - (-1)"Qm

for such an n and m is not a trivial failure and so our proviso is that the two products in
(32) are in the same period. This means that one has

anZn (36)

for the corresponding indices n, and not that the sums differ by an approximate multiple of
1068. For very large N, the period is usually very large, and the individual n in (36) will be
very small in comparison. So (36) cannot fail unless there are very many n in one S;.

I give no conclusion here concerning the practicality of programming this test: (32), (36).
If there are only a few factors in (4), as in (31), the test is almost immediate, but many
factors would allow many possible partitions into S; and Ss.



5 Success

If the test (32), (36) fails on a square (4), the probability of success in obtaining a proper
factor of N will be shown to be at least 1/2 if N is divisible by two distinct primes, and the
probability increases as the number of prime dividsors of N increases. To illustrate the fact
that failure may still occur, consider Q? = (—Qss) - (—Q321) from (27). This product does
not satisfy (32) or (36). Nonetheless, it fails since there is an fig3 = —5 - 31. Therefore

f55 : f321 = (13)f1293

and Q? is equivalent to a trivial failure. Note that 2 - 193 ~ 55 + 321.

Will Q% = (—Qs5) - (—Q109) from (27) succeed? If there were an f, = +13 - 31 with
n =~ 82 = £(55 + 109), this @ * 2 would fail in the same way. But there is no such n; one
finds that fgos = —13 - 31 is located about one-half a period away from n = 82. In the same
way, in our equivalent products I and IV, with 52 atn = 52, one finds that 5 = fs53 occurs
about one-half a period away from n = 26.

Either by continuing Figure 1 to n = 52, or by composition of F5, F5;, and Fy3 as in (26),

we obtain

Fs» = (25,7244, —6847) (37)

corresponding to the prime ideal product 5. A square-root of Fy, is obtained immediately
by

(5,7244, —5 - 6847)

and we reduce this by adding the largest even multiple of 5 to 7244 that keeps the sum less
than 2v/N. We thereby obtain the reduced form

(5,7284, —5179), (38)

corresponding to 5. Now compute the period of (38) going backwards for about 26 = 52/2
forms as in Figure 2

6238 —571
6238 6238
6324 —571
5764 ..
6980 —311
3569 158
7286 —3722
5 7284
—5179
Figure 2
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We find that 24 forms before (38) there is an ambiguous form

(6238, 6238, —571) (39)
where an end-coefficient (6238) divides the center coefficient (6238) and therefore also divides
the discriminant 4N. So 3119 divides N and we have

N = 3119 - 4261

with no use of the A,, whatsoever. One knows when one is at the ambiguous form in Figure
2 by the symmetry there; the adjacent center coeflicients are equal.

The forms (38) and (39) are, in fact, Fiss and Fisq, respectively. We are still in the
principal period although we would not have known that if we had merely computed the
period down to Fys, or even to Fis.

In much the same way, from our previous discussion and (28), the square

Fys * Flg9 = (—403)%,50172,3793) (unreduced)

has a square-root

(—403,6648,5561) (reduced), (40)

and 71 forms before it in its period one again finds Fs34 since (40), as suggested above, if
Fyo5. On the other hand, as explained above, a square-root of Fx5 * F3a; is

(—155, 7206, 1990), (41)

and going back 193 forms leads us not to Fsss but rather to Fy = (1,7290, —4034) since (41)
is, in fact, Fjg3. But this ambiguous form Fj is a failure; it merely yields the trivial factor
1| N. (In other words, failure does not mean no factor of N; it means no proper factor.)

In all of the foregoing, we remained within the principal period. To obtain the full
picture, we will soon compute examples that take us into other equivalence classes. But first
we recompute the factor of N from (38), and from (40), in a different, usually faster way.

Instead of going backwards from (38), as in Figure 2, let us go forward from its inverse:

(5,7286, —3722) (42)

This form is seen in Figure 2 as the predecessor of (38) read backwards. It is F5;9 = Fioes_558
and has fs;0 = 5, not 5. We want to go forward from (42) the equivalent of about % 52 = 26
forms and so we compose (42) with

Fys = (3286,2618, —3523) (43)
This composition is readily computed [3, Appendix 1] to be

(5 - 3286, —3954, —571)

which we reduce to

11



F = (5765,6324, —571) (44)

Now F should be close to an ambiguous form. It is, in fact Fs35 and therefore only one form
away from the ambiguous form Fjs;.
Similarly, we compose the inverse of (40):

(—403,7054, 2110) (45)

(which happens to be Fug3 = Fioes—s05 although we need not know that to factor N) together
with

Fg = (3134,2120, —3851) (46)
We get

(—403 - 3134, —54202, —572)

which again reduces to (44).

Now suppose that N is very much larger. If we are lucky and encounter a square form
such as (37) early, we can go backwards from the square-root, as in Figure 2, and factor N
with the P, and Q,, alone, and with no composition of forms needed either. But, in general,
we should anticipate that our square product (4) will involve several or many indices n with
¥n beyond, or even much beyond, our last index n computed. We would therefore compute
the product mF, by composition as in (26). This product would remain in the principal
equivalence class and would be

2

F = (75.B,C) (47)

for a K2 caused by the cancellation of the conjugate prime ideals as in (26). (Usually, there
will be considerable cancellation and Q? will be correspondingly much reduced in magnitude.)
IF the product F' were reduced, it would become F;, with m ~ ¥Xn. But we do not reduce
F'; we reduce the square-root

QR L, QC
G= (?,B, ?) (48)
instead and compose its inverse G™' with F, where r ~ m/2. Then, somewhere in the
vicinity of G=! * F,, we find an ambiguous form which gives us a proper or a trivial factor
of 4N.

Where do we get F,.?” We may have already computed it, but, if so, we may have also
discarded it. If we save Fys for s = 0,1, 2, ..., and express r in binary, we can obtain an F}.
by the composition of all those Fys where 2° appears in this binary representation. If we
need some Fs: beyond the last Fys encountered, we may repeatedly square (and reduce) this
last Fys. The resulting F,, will be close enough since we can only expect to put G x F,, into
the vicinity of an ambiguous form. If r is large, say 10%, we may, in fact, have to search the
period of G! * F, for some way, in both directions, to find the ambiguous form. But that

should be relatively fast since one merely computes the P and @ (without any factorization
of the @) until one find 2P, = 2P, ;.

12



6 Other Equivalence Classes; the Whole Picture

Although (47) is in the principal equivalence class, all that we immediately know about (48)
is that it is in some equivalence class whose square is the identity of the class group. The

identity is represented by the principal period, and (48) (when reduced if necessary) may, or
may not, lie in that period. Returning to N = 13290059, consider two other square reduced
forms:

Fyz0 = (53%,4272, —3107) (49)
Fyg = (41%,4702, —4618) (50)
They have the reduced square-roots:
G = (53,7240, —3503), (51)
H = (41,7244, —4175). (52)
We first compute
G~ x Figs = (53,7282, —626) * (—179, 7170, 2446) = (—179 - 53, 15762, —5146)

The product shown reduces to (1129, 5470, —5146) and nine forms later in its period:

1129 5470
—5146
1142 6238
6238 —3119
1142
we find the ambiguous form
Gm = (—3119, 6238, 1142) (53)

which again gives 3119 | N. But G and G,, do not lie in the principal period. In fact, no
end-coefficient in the new period occurs as a (—1)"@,, in the continued fraction algorithm
as given in [1]. G and Gy, lie in a nonprincipal period that “begins” as follows:

n

0 -2 7290
1 4812 2017
2

-3719

It has a period equal to some 2m ~ 1068 whose exact value was not determined?. G,, is at
its midpoint while G = G, with r some odd number ~ 185.

21072, actually [SM]
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Next we compute
H™' % Fyy = (41,7270, —1874) * (937, 7270, —82).

The second form is equivalent to (—82,—7270,937) since (A, B,C) is always equivalent to
(C,—B, A), and so the required composition is immediately found to be the ambiguous form

Go = (—2,7290,2017) (54)

seen above. Therefore, 2 | 4N and we have a failure - a trivial factor.
Since 2 ramifies and (—1)? = 1, any square reduced form such as (50) has at least four
reduced square-roots, and the H of (52) is only one of these for (50). The four are

(41,7244, F4175) and (+82, 7162, F5689) (55)
and the last of these may be identified as

F45 = F22 * F23 = (—82, 7162, +5689),

as had been computed in Section 4 after (26). Now Fy5 does lie in the principal period, and
FL = Fgg, so Fgg is seen to be equivalent to a trivial failure.

For this N, or any N = —1 (mod 4), —1 = (—1)"Q,, for no n in the principal period;
or equivalently, N(e) = +1 for the € of (35). Therefore, all four forms in (55) lie in distinct
periods. The four periods begin, respectively, with the ambiguous forms

+Fy = (+1,7290, F4034), +G, = (F2,7290, £2017) (56)

and contain, respectively, four other ambiguous forms

+ i3y = (6238, 6238, F4034), +G,, = (F3119, 6238, +1142) (57)

at their half-periods. So the principal form Fy has eight reduced square-roots, one-half
yielding proper factors and one-half yielding trivial factors.

These four periods having the discriminant d = 4 - 13290059 are the only periods that
occur for this d; i.e., the quadratic form class number equals 4. But the ideal class number
equals 2 here. Multiplication by —1 leaves an ideal in the same equivalence class and so
whenever N(e) = +1 the ideal class number is one-half of the quadratic form class number.
The ideal class number h satisfies

2hloge > P
Z gp—(ﬁ)'

For our d above, (d/p) = 0 for p = 2, +1 for p = 5,13,31, and —1 for other p < 37. Since
we can roughly estimate log e from (35) and (22), we can roughly estimate h by
d-121log2
~ \g tosenr 15— ay = 2013
™ P (;)
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for this d.

Any other N = —1 (mod 4) that is divisible by exactly two distinct primes will again
have four ambiguous periods, beginning as in (56), and having midpoints as in (57), but if
the ideal class number of Q(+/N) > 2 there will be additional, nonambiguous periods that
do not enter into our factorization process. The corresponding equivalence classes are not
square-roots of the identity in the class group. If N = —1 (mod 4) is divisible by exactly &
distinct primes, there will be 2¥ ambiguous periods and 2**! reduced ambiguous forms. Of
the latter, only those four with £1, 42 on the left will give trivial factors; all other factors
are proper. So the probability of finding a proper factor increases with k.

These 2F ambiguous periods include the principal period F' that be%ins with Fp, and
2k _ 1 periods G, for i = 2 to 2*, that begin with ambiguous forms GOZ) and have other
ambiguous forms G%l, for certain m;, at their midpoints. Then the composition F,, F},, when
reduced, equals F, for some r =~ n+m, and similarly Gg) * Gg,? gives F, while F;, % Gg,? gives
GY. The resulting period, F' or G®, reflects the group structure, while the location of the
product within its period r & n + m reflects the infrastructure, cf. [4]. All of our analysis of
failure above and both of our rules for finding factors of N are merely special cases of these
laws of composition. Since the factors of N are end-coefficients of ambiguous forms, we do
not need the A,, to compute them; we merely need to know how far away they are from our
square-roots (48).
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